
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Integrating Cerebro with Ray
Abhishek Gupta

University of California San Diego
La Jolla, California, USA

Rishikesh Ingale
University of California San Diego

La Jolla, California, USA

ABSTRACT
Cerebro is a model selection system that introduced the concept
of model hopper parallelism (MOP), which is a strategy that in-
herits the upsides of data parallelism and task parallelism but not
their downsides. Cerebro allows for the addition of new execution
backends, which can be done by implementing a new class that
extends its abstract Backend class. Using Ray, an API for building
distributed applications in Python, we have created an additional
backend that performs Model Hopper Parallelism for scalable and
efficient model selection on deep learning models created with
standard Python machine learning libraries. Our work includes
sharding the processed training data across multiple machines and
implementing MOP over the different models on these shards.

KEYWORDS
model hopper parallelism, model selection, deep learning, machine
learning, Ray
ACM Reference Format:
Abhishek Gupta and Rishikesh Ingale. 2021. Integrating Cerebro with Ray.
In Proceedings of ACM Conference (Conference’21). ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Deep learning has made many strides in the fields of computer
vision, natural language processing, and reinforcement learning
to name a few. Such advances have been made possible due to the
ever-increasing number of parameters within the models used as
well as the introduction of novel architectures. However, as models
get larger and more complex, the problem of model selection be-
comes more difficult. More often than not, ML practitioners want
to experiment with not only the number of parameters but also dif-
ferent architectures as well as hyperparameters in order to alleviate
the effects of underfitting or overfitting. This presents a massive
bottleneck for the adoption of deep learning by enterprises and
domain scientists.

To address this, Nakandala et al. created Cerebro [4], a data sys-
tem for model selection which implements a new type of parallelism
called Model Hopper Parallelism (MOP), a hybrid of data and task
parallelism. The system is made open source to allow the addition
of new execution backends. Currently, MOP is implemented in
Cerebro using a Spark backend.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’21, July 2021, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

We were tasked with implementing a backend using the Ray
library. Ray is an API that allows users to build distributed applica-
tions in Python. It offers various primitives that can be leveraged
in order to implement remote procedural calls (RPC), specify re-
sources, and shard data. This was all needed in order to replace
Spark dependencies found in the original backend. The results ob-
tained from the experiments demonstrate similar performance to
that of the Spark backend.

2 BACKGROUND
In this section, we provide some background on how MOP works
at a high level, the structure of the Cerebro system, and the specific
primitives that the Ray API offers and have been of use in this
project.

2.1 Cerebro

Figure 1: MOP Performance [4]

Cerebro distributes training across a cluster of workers. Assum-
ing that it is given 𝑆 configurations to train on the same dataset and
𝑝 < 𝑆 workers, Cerebro starts by splitting the data into 𝑝 shards,
and places one on each worker. When the time comes to execute
a single training epoch for all the configurations, Cerebro starts
by creating a set of worker-configuration pairs and shuffling them
randomly. Depending on the scheduling algorithm as well as the
idleness of the workers and configurations (the latter being defined
as currently training a configuration and the former being defined
as currently being trained on a worker), Cerebro makes the config-
urations visit the workers such that each configuration visits all
workers only once during the current epoch. When a configuration
visits a worker, the worker trains the configuration on its shard
using one pass of stochastic gradient descent (SGD); this is called a
sub-epoch. When a sub-epoch is completed, both the worker and

2022-02-20 08:31. Page 1 of 1–7.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’21, July 2021, Washington, DC, USA Trovato and Tobin, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

configuration become idle. This allows Cerebro to remove that par-
ticular pair from the set of worker-configuration pairs and schedule
sub-epochs for other pairs. This property of the configurations
"hopping" from worker to worker is what gives MOP its name. As
one can deduce from this description of MOP, it inherits the bene-
fits of data parallelism and task parallelism without incurring their
memory, storage, and communication costs (see Figure 1).

Figure 2: Cerebro System Architecture [4]

Cerebro is a system with five main components: the API, Sched-
uler, Task Executor, Catalog, and Resource Monitor (see Figure
2). The API is how clients interact with the system and includes
useful functions such as executing a training or validation epoch
given a set of estimators. The Scheduler is responsible for running
randomized scheduling by keeping track of idleness and remaining
worker-configuration pairs. The Task Executor is responsible for
starting sub-epochs on worker nodes. The Catalog provides worker
and data availability information to the Scheduler. The Resource
Monitor monitors the cluster of worker nodes through heartbeat
checks and updates the Catalog. Adding a new execution backend
requires implementing the functionality for all of these components
while also conforming to the API.

2.2 Ray
Ray offers a number of primitives that are useful for general-purpose
distributed computing, however only a few of these primitives were
sufficient for our purposes. The main thing that Ray introduces to
users is remote functions, also known as Ray Tasks.

@ray.remote
def f(x):

return x * x

futures = [f.remote(i) for i in range(4)]
print(ray.get(futures)) # [0, 1, 4, 9]

In the code above [1], f is a remote function that can be called
using f.remote(i). The return value of this call is a remote ob-
ject reference, the significance of which will be explained later
in this subsection. The actual return value can be fetched using
ray.get(f.remote(i)). Calling f multiple times simultaneously
as a Ray Task rather than an ordinary Python function allows Ray
to utilize multiple cores to parallelize execution, thereby cutting
down runtime significantly. For example, if the above code were to
run [f(i) for i in range(4)] instead, it would take about four
times longer.

Just as functions can be made remote, classes can as well. In Ray,
these are called Actors or stateful workers.

@ray.remote
class Counter(object):

def __init__(self):
self.value = 0

def increment(self):
self.value += 1
return self.value

Create an actor from this class.
counter = Counter.remote()

Call the actor.
obj_ref = counter.increment.remote()
assert ray.get(obj_ref) == 1

The code above [2] creates a remote instance of Counter using
Counter.remote(). It has a state, value, and a remote function,
increment, which can be called in the same manner as the remote
function seen previously: counter.increment.remote().

As previously mentioned, the return values of Ray Tasks are
remote object references. The remote objects themselves are stored
in a Pickle format in Ray’s shared-memory object stores, of which
there is one per node in a Ray cluster. We may not know on which
node a remote object lives on; however, it can be replicated in
other object stores. The caveat of this is that remote objects are
immutable, which is done to remove the need of synchronization
after writes. It is not necessary to write remote functions to generate
remote objects as users can call ray.put(obj) to put objects in
Ray’s global object store. To delete objects from the object store,
the remote object reference simply needs to go out of scope or be
deleted using Python’s del operator.

Ray Data offers a set of functions specifically geared towards
datasets. For our purposes, we were only interested in the three
following functions.

(1) read_parquet(): read a parquet file into memory as an Ar-
row dataset

(2) Dataset.split(n): split an Arrow dataset into 𝑛 shards
(3) Dataset.to_pandas(): convert the Arrow dataset into a

Pandas DataFrame

One thing to note is that Arrow tables are columnar, whichmakes
retrieving entire columns quickly to be transformed to tensors
for training. The split() function is also able to do fast, disjoint
sharding across workers.

2022-02-20 08:31. Page 2 of 1–7.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Integrating Cerebro with Ray Conference’21, July 2021, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 IMPLEMENTATION
In order to add a new execution backend to Cerebro, one must
implement a new class that extends the abstract Backend class.
Specifically, the resulting implemented class should include func-
tionality to both materialize training data (e.g. writing the pre-
processed training data to persistent storage such as the Hadoop
Distributed File System (HDFS)) and implement MOP. The latter
requires running multiple worker services in a cluster and a dri-
ver program to act as the Scheduler, Task Executor, Catalog, and
Resource Monitor. What follows are the functions implemented in
our new RayBackend class in the order that they should be called.

3.1 __init__()
The constructor of the new execution backend first tries to detect
an existing Ray cluster (which is the setting for when Ray has been
deployed over multiple machines) and tries to connect to it. If a Ray
cluster is not found (specified by a ConnectionError returned by Ray
which is handled), then Ray is initialized through the constructor
for a single node setting for the machine being executed on. If
the number of workers is given, then that number is saved in an
instance variable. Otherwise, that number is set to the number of
nodes detected. Other instance variables required for executing
Model Hopper Parallelism are set to default values.

The constructor also decides the resources to allocate to each
worker. This is done for the expectation that in a multi-machine
setting, each worker should be assigned the whole machine. Al-
though a rigid requirement, the code allows that this rigidity can
later be changed if other flexible approaches are needed later. Us-
ing ray.available_resources(), the constructor is able to gauge the
total number of CPUs available to the ray cluster. It is also able to
gauge the total number of machines (nodes) that are deployed
in the cluster. With the assumption that the number of work-
ers is the same as the number of machines, the total number of
CPUs is equally divided by the number of machines. This num-
ber_of_CPUs_per_worker is assigned as the number of resources to
each worker.

A point to note is that Ray can only provide the total number
of CPUs in the cluster, and not the number of CPUs per machine.
Thus, this approach works only if the machines the Ray Cluster is
deployed on are homogeneous, i.e. they have the same number of
CPUs. If machines with different number of CPUs are deployed, the
currently used code could have a problem. For example, if there are
2 machines with 10 and 20 CPUs and 2 workers, the constructor will
assign 15 CPUs to each worker. The first worker can be deployed
using 15/20 CPUs of the machine, but there is no machine that has
15 machines left for the second worker, leading to an infinite wait.
If needed, this problem may be mitigated by removing the use of
ray.available_resources() and instead using third party tools that
can provide the number of CPUs per machine. This can be used to
dynamically allocate resources to the workers.

In the case of Ray being deployed on a single machine, a much
simpler approach is used where the number of CPUs is set as 4. For
the simple setting of 4 workers on a single machine, which is the
most expected, this was found as the optimal number that reduces
latency due to any memory stalls and also does not interfere with
other processes on the machines using the other cores.

3.2 initialize_workers()
In addition to defining a class for the new Ray execution backend,
we also defined a remote class, Worker, which has the four following
functions.

(1) __init__(): Initializes one instance variable which essen-
tially indicates whether this worker is idle.

(2) get_completion_status(): Returns whether this worker
is idle or not.

(3) accept_data(data_shard, is_train): This function is
called when the time comes for the worker to accept its
assigned shard of data. is_train indicates whether that
data is part of the train or validation set.

(4) execute_subepoch(fn, is_train, initial_epoch): Ei-
ther trains or evaluates on the data already given to this
worker and writes the result to storage.

This function creates a list of these remote workers, with the size
being the one specified in the constructor. The instance variable
specifying whether the workers have been initialized is set to True.

3.3 prepare_data()
Given a Pandas DataFrame and storage object, this function first
writes the DataFrame to the store in Parquet format, splits the
DataFrame into train and test sets, and creates a Python dictionary
that is populated with the metadata of each column. This ensures
recovery from possible node failures.

3.4 get_metadata_from_parquet()
This function reads the Parquet files written to the store from the
previous function, and generates and returns the same metadata
dictionary. The metadata includes the type and size of each column
in the dataset.

3.5 initialize_data_loaders()
Only if the workers are initialized (determined by checking an
instance variable), this function starts by reading the Parquet files
written to the store by prepare_data() using the function to read
Parquet files in Ray Data. The result is an Arrow dataset, which can
be split into a number of shards equal to the number of workers.
Each worker then receives one shard via the accept_data function.
Finally, an instance variable indicating that the data loaders are
initialized is set to True.

3.6 train_for_one_epoch()
This is the main function for carrying out the Model Hopper Paral-
lelism over all models 5, checkpointing the models trained for each
epoch, and returning the epoch results such as loss and accuracy
back to the caller.

What follows is our explanation of some primitives and functions
we use to implement this training function.

(1) Ray Estimator: In the original Spark implementation, the
Keras models as well as other objects that were used to
train it (optimizer, criterion function, store object, etc.) were
wrapped in SparkEstimator instances which were then
passed into the train_for_one_epoch() function (In the subse-
quent subsections we will show how this estimator is used).

2022-02-20 08:31. Page 3 of 1–7.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’21, July 2021, Washington, DC, USA Trovato and Tobin, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

To remove this Spark dependency, we had to create our own
RayEstimator class. This Ray Estimator includes the model,
all the keras objects required for training (optimizer, loss,
etc.) as well as functions for compiling the model, getting
Keras Utilities to load and save the model, etc. Other func-
tions that are added in this class included getters and setters
for all the objects. Essentially, this is a wrapper that allows
us to treat the whole model (with its losses, optimizers etc.)
as an atomic unit.

(2) get_remote_trainer(): The train_for_one_epoch() function
begins by getting some metadata from the models and data
and uses this to create training instances of each model pro-
vided to the function. The creation of training instances
is done through the get_remote_trainer() function, which
checkpoints the model from the Ray Estimator (explained
below) object if it has not already been check-pointed. It
then loads the model, compiles it and returns it in a training
instance, called a sub_epoch_trainer.

(3) sub_epoch_trainer(): The sub_epoch_trainer loads all the
primitives needed for trainning the model and keeps them
as a part of the function. These include the callbacks during
Keras training specified by the user, the functions for training
and evaluating the model from Keras, the remote store that
contains all the paths to the models, and the Keras model
deserialization functions. It also embeds the training function
used for training the sub-epoch. This training function can
be called by the Ray Workers, and loads the model from the
object stores (as described below) trains them on the sub-
epoch data and returns the sub-epoch result. Each subepoch
trainer contains this data for its respective model and returns
the train function that can be executed by the worker.

train_for_one_epoch uses the functions above and schedules them
using a version of the randomized scheduling algorithm (see Figure
3). The function first calls get_remote_trainer() and for the estima-
tors returned by the model, each model is put into the Ray Object
Store using ray.put(). This gives the Object References for each
model to the master function, which can pass on these object ref-
erences to the worker functions. The worker functions can obtain
the underlying model using ray.get(). However, during the imple-
mentation, it was not so simple. We encounter a huge problem
that while the get_remote_trainer() returns compiled models to us,
these Keras models are not picklable. On the other hand, Ray uses
pickling to place the objects in the object stores. We, thus, cannot
place the compiled models into the object store. Instead, we have
to break down the model into its architecture (stored as a JSON file
using model.to_json(), the model’s constituent weights (obtained
using textitmodel.get_weights()), the loss and optimizer functions,
and the optimizer states. These are all stored in a dictionary and
sent to the object store. When any process tries to get the model, it
calls ray.get() on the object reference and obtains this dictionary. It
then gets the respective architecture, weights, loss and optimizers,
and uses Keras’s compile function to get the model it can train. As
expected, this whole process incurs a huge overhead that can be
solved if tf.keras models become picklable in the future. Finally,
the train_for_one_epoch function is able to pass all the initial model

references to the object store and begins scheduling the models on
the workers according to the randomized scheduling.

Figure 3: Randomized Scheduling Algorithm [4]

We can merge the two algorithms shown in Figure 3 to get
our version of the randomized scheduling. What was Algorithm
2 would be executed if the 𝑗th worker is not idle according to the
local array, but has completed a subepoch, which can be checked
using get_completion_status(). In addition to changing the lo-
cal *_idle arrays, the randomized scheduling algorithm that we
implemented would try to find an idle worker that the newly idle
model has not yet visited and send it to that worker if it exists. Es-
sentially, this is the heartbeat check used by the Resource Monitor
to check for failures, but instead we use it to check completion
statuses of workers. Due to time constraints, we were not able to
check for and recover from failures, which we will discuss more
about in Section 5.

Figures 4 and 5 show the training process on the worker when
a model is assigned on a worker. The worker gets the reference
to the model which is included in the sub_epoch_trainer as well
as other useful data such as if it is for training or validation and
the epoch number. It then gets the training/validation data shard
assigned to it (present in its state), and sends all of this to the train
function of the sub_epoch_trainer. The train function is able to get
the model by sending the model reference to the object store. Of
course as described before, the function gets the dictionary whose
elements it has to pass to the Keras compile function to get the
model. Once it gets this model, it trains it using Keras’ fit function
on the sub-epoch data. The worker now has the trained model and
it sends this back to the object store (splitting it up into a dictionary
as described before). The previous model (that the worker initially
got) now has no references pointing to it and is garbage collected

2022-02-20 08:31. Page 4 of 1–7.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Integrating Cerebro with Ray Conference’21, July 2021, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 4: Training Process on the Worker When Getting
Model

Figure 5: Training Process on the Worker When Subepoch
Training Completes

by Ray. This ensures that the Ray Object store has only one copy
of a model at a time and does not run out of memory. The worker
then sends the epoch results (loss, accuracy, etc) along with the
latest model’s Object reference back to the train_for_one_epoch()
function which can use these model references to assign the model
to the next worker.

Once the entire scheduling is finished, the train_for_one_epoch()
function gathers all the sub-epoch statistics for each model and
averages them to get the epoch statistics. It also increments each
model’s epoch by 1. It then sends the epoch statistics to the callee
tune function which uses them for logging metrics.

However, we realised that using the Ray Object store, where
we have to split up the model into a dictionary and compile it every
time we receive it, incurs a huge overhead. In the final days, we tried
using just the remote object store provided in cerebro.storage, as
is done in the Spark implementation. Here we checkpoint the model
using model.save() into a path in the object store and load it from
this path again using the keras_deserialize_fn() implemented in the
backend, just as it is done in the Spark implementation. We find
that this is actually faster than the Object Store implementation,
and shaves around 1 second off per epoch while training. Hence,
this is the approach we use in the final code that we have submitted.

3.7 teardown_workers()
This function only calls ray.shutdown() in order to shut down
all Ray processes in the cluster. This automatically kills all the
consistent worker processes deployed on different machines and
shuts down the master Ray process, before returning control to the
calling tune.py function.

4 RESULTS
We try to evaluate ourmodel on 2 datasets: An augmented version of
the MNIST dataset and the Criteo dataset. While we get promising
results on the augmented MNIST as well as a truncated Criteo
dataset, we run into hardware issues (which we have elaborated
below) while evaluating on the full Criteo dataset. Hence, we are
unable to show the final results of replication of the Criteo in [4].
However we will explain why we believe we can replicate those
results once the hardware issues are resolved.

4.1 Augmented MNIST
The MNIST dataset consists of 24x24 sized images that consist of
handwritten digits, while the labels are 0-9. It is a classic classifica-
tion task used to test neural networks. The original MNIST dataset
is considerably tiny for our use case, containing only 70000 data
points (feature images and labels).We instead use an augmented ver-
sion of the dataset that increases the data by 10 times to 700000 data
points. This is more suited to the scale at which we are doing dis-
tributed training. We flatten the input images into vectors with 784
dimensions and use a fully connected neural network with 2 layers
(hidden sizes of 1000 and 500) for classification into the 10 labels.
For the loss function we use Keras’ CategoricalCrossentropy
loss (as the labels are one-hot vectors) and the optimizer used is
the Adam optimizer.

We use 4 workers for our implementation (each worker is as-
signed one full machine). We use 4 different hyperparameter con-
figurations for this testing, spanning across 2 learning rates and
2 regularization values. In total, we train 4 models on Criteo. We
compare our approach with 2 other approaches. The first is a naive
sequential approach that uses Keras to train each model one after
the other. The second comparison is to Ray Tune [3], which is a task
parallel approach that replicates the data across multiple workers,
assigns a model to each worker and trains it end-to-end.

Figure 6: MNIST Time Bar Chart

2022-02-20 08:31. Page 5 of 1–7.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’21, July 2021, Washington, DC, USA Trovato and Tobin, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 7: MNIST Memory Bar Chart

The Figures 6 and 7 show the results of our implementation’s per-
formance with the other approaches. Looking at the time taken for
training the 4 models (Figure 6), we take 322.94 seconds compared
to the sequential model’s 1428.37 seconds, which is more than a 4x
speedup. Considering that our network uses 4 models, we are thus
able to provide more than a linear speedup compared to sequential
models. However, we perform slightly worse than Ray Tune, which
takes 262.37 seconds. The reason for this is that the data we use is
able to fit on a single node of the machine, essentially making this
problem task parallel. In this case, we incur the overhead of Model
Hopping, while Tune is able to train the models end-to-end and
thus perform better. We believe that combining this with a data
parallel approach, where the data does not fit on one node, will lead
Tune to incur I/O overhead of loading the data shards again and
again. This is much larger than the MOP overhead and will lead to
our model performing again.

Figure 7 shows the memory usage of the 3 different approaches.
We are able to provide almost a 4x decrease in the resource usage
per CPU. This is because the other approaches load the entire data
into memory of a machine, while we shard the data across the
workers. Since we use 4 workers, we store one-fourth of the data
on each worker, thus providing an efficient memory usage.

Figures 8 and 9 are sanity checks to show that all the 3 ap-
proaches follow sequential SGD. As we can see, the loss curves
of all 3 approaches are quite similar and converge quickly, while
all the approaches approach 98-99% validation accuracy within 5
epochs.

4.2 Criteo
For Criteo, we run into a hardware problem while evaluating on
the dataset. Each partition of the train data is too large to fit in
memory, and thus when we want to transform it into the parquet
files for Cerebro (we need to make changes like changing the ’labels’
column to ’label’, making the one-hot-encoded list of labels into
Numpy arrays and putting this transformed data back to a parquet
file), we ran out of RAM and the program crashed. This was despite
trying to transform the data with multiple libraries like Pandas, Ray
Data, etc. We tried with machines up to 156 GB of RAM and got
out-of-memory issues. Since this testing was in the last 2 weeks of
the quarter, we were unable to get access to machines with more
RAM.

Figure 8: MNIST Loss Plot

Figure 9: MNIST Accuracy Plot

However, we did try to use a very small subsample of the Criteo
dataset (by getting access to the original TSV files, removing all
the categorical values and using a 10% sample of a single training
partition). Using this, we were able to get increases in performance
(memory and time) comparable to our MNIST example. However,
all 3 approaches were not able to converge or get any reasonable
accuracy as we were training on only the numeric features while
discarding categorical ones. Looking at the performance benefits,
we believe that if suitable hardware is accessed, we should be able
to replicate the results of [4] on our Ray implementation.

In the current code we submit, we have only shown the MNIST
example, as we feel the Criteo example is incomplete if we don’t
have comprehensive results. However, provided that the Criteo

2022-02-20 08:31. Page 6 of 1–7.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Integrating Cerebro with Ray Conference’21, July 2021, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

dataset is suitably prepared for our implementation, an evalua-
tion script for it can be easily generated by following our MNIST
example.

5 FUTUREWORK
We plan to implement replica-aware scheduling as mentioned in
[4]. This would involve replicating shards across multiple workers
in the hopes that configurations would not need to visit all workers
at each epoch. This would require the remote Worker instances
to maintain a list, set, or dictionary of shards instead of having
just two references to its train and validation data shards. The
Scheduler would also need as input an availability mapping of
shards to workers, or the workers can expose what shards are in
their possession through a function which the Scheduler can call
at the beginning of every epoch to construct the mapping itself.
Whenever the Scheduler looks for a worker which a configuration
has not visited, it will simply consult the availability map.

We plan to implement fault tolerance and elasticity, also men-
tioned in [4] which suggests keeping track of subepochs currently
being trained. If a failure is discovered during a heartbeat check,
the subepoch will be moved back into the original set of subepochs
to be run. The Scheduler can find another node with a replica of
the shard and use the last checkpoint of the configuration written
to the store to proceed.

Future work also includes the goals of Cerebro that can be imple-
mented on Ray. The first is hybridizingMOPwithmodel parallelism,
which is sharding the models themselves across nodes. The second

is including support for more complex model selection scenarios
such as transfer learning.

6 CONCLUSION
Ultimately, the Ray API greatly simplified the task of implementing
MOP. Since Ray abstracted out most of the low level implemen-
tation details such as sending data over a wire, serialization, and
synchronization wewere largely able to focus on the high level com-
ponents of the Cerebro system. We were also able to see firsthand
the effectiveness of MOP compared to those of sequential training
and task parallelism and identify pressure points of dealing with
datasets that don’t fit within a single node’s memory. In the future,
we aim to resolve the issues that we ran into and introduce the
mentioned optimizations to improve throughput of model selection
using Ray.

ACKNOWLEDGMENTS
We are grateful to Professor Arun Kumar for meeting with us
weekly and guiding us through the entire process, and to Supun
Nakandala and Yuhao Zhang for answering our technical questions.

REFERENCES
[1] [n. d.]. A Gentle Introduction to Ray. https://docs.ray.io/en/latest/ray-overview/

index.html.
[2] [n. d.]. Ray Core Walkthrough. https://docs.ray.io/en/latest/walkthrough.html.
[3] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,

and Ion Stoica. 2018. Tune: A research platform for distributed model selection
and training. arXiv preprint arXiv:1807.05118 (2018).

[4] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data System
for Optimized Deep Learning Model Selection.

2022-02-20 08:31. Page 7 of 1–7.

https://docs.ray.io/en/latest/ray-overview/index.html
https://docs.ray.io/en/latest/ray-overview/index.html
https://docs.ray.io/en/latest/walkthrough.html

	Abstract
	1 Introduction
	2 Background
	2.1 Cerebro
	2.2 Ray

	3 Implementation
	3.1 __init__()
	3.2 initialize_workers()
	3.3 prepare_data()
	3.4 get_metadata_from_parquet()
	3.5 initialize_data_loaders()
	3.6 train_for_one_epoch()
	3.7 teardown_workers()

	4 Results
	4.1 Augmented MNIST
	4.2 Criteo

	5 Future Work
	6 Conclusion
	Acknowledgments
	References

