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ABSTRACT
Deep learning (DL) is growing in popularity for many data analytics
applications, including among enterprises. Large business-critical
datasets in such settings typically reside in RDBMSs or other data
systems. The DB community has long aimed to bring machine learn-
ing (ML) to DBMS-resident data. Given past lessons from in-DBMS
ML and recent advances in scalable DL systems, DBMS and cloud
vendors are increasingly interested in adding more DL support
for DB-resident data. Recently, a new parallel DL model selection
execution approach called Model Hopper Parallelism (MOP) was
proposed. In this paper, we characterize the particular suitability of
MOP for DL on data systems, but to bring MOP-based DL to DB-
resident data, we show that there is no single “best” approach, and
an interesting tradeoff space of approaches exists. We explain four
canonical approaches and build prototypes upon Greenplum Data-
base, compare them analytically on multiple criteria (e.g., runtime
efficiency and ease of governance) and compare them empirically
with large-scale DL workloads. Our experiments and analyses show
that it is non-trivial to meet all practical desiderata well and there is
a Pareto frontier; for instance, some approaches are 3x-6x faster but
fare worse on governance and portability. Our results and insights
can help DBMS and cloud vendors design better DL support for DB
users. All of our source code, data, and other artifacts are available
at https://github.com/makemebitter/cerebro-ds.
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1 INTRODUCTION
Deep learning (DL) for data analytics continues to grow in popular-
ity, leading to a growing demand for products that make it easier
to adopt DL, especially among enterprises [54]. The DBMS commu-
nity has long worked on bringing machine learning (ML) closer to
the home of business-critical datasets in enterprises: DBMSs and
other data systems. This paradigm of “In-DBMS ML” (or “In-data
system ML”) has waxed and waned over the last 20 years, with 3
general waves of work. It now merits a revisit in the era of DL.

One may wonder if DL is useful for DBMS users, since DL is
primarily popular on unstructured data, while DBMSs mainly han-
dle structured data [61]. Although much of DL’s successes are on
unstructured data that are commonly stored on filesystems or data
lakes, DBMSs have long provided storage support for text, mul-
timedia [85, 110], and other objects [23, 99]. Furthermore, due to
the benefits of embedding learning and less feature engineering
in DL [101, 108], many recent works in both research and enter-
prise applications show that DL is becoming increasingly usable
and effective even on structured data [46, 69, 72, 102, 103]. Multi-
modal analytics combining structured and unstructured data are
also popular and relevant for DB users [20, 71, 78, 106]. Finally,
DL’s “interpretability” pain, once a showstopper for some enter-
prise users, is being actively mitigated by ML researchers [30, 114].
In the reality of ML practice, data scientists do not think in an
all-or-nothing manner; different model types, including DL, are
popular for different use cases. A recent Kaggle survey [53] con-
firmed multiple model types, including DL, remain popular. This
paper focuses specifically on DL because we believe it is an area
that needs more attention from the database community.

1.1 Lessons from In-RDBMS ML
In the first wave of in-RDBMS ML, DB vendors built “data mining
tools” that scaled a few ML algorithms to DB-resident data [14, 31,
84]. They enabled access to ML from the SQL console. But as ML
algorithms grew in complexity, a second wave of unified implemen-
tation abstractions were devised for in-data system ML [32, 42];
MADlib [47] and Spark MLlib [74] are key examples. The third
wave is seeing cloud DBMS vendors adding more in-RDBMS ML
support, e.g., Google’s BigQuery ML [3, 8, 13], as well as invoking
DL from DBMSs [4, 9].
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Figure 1: In-data-system DL. Data system invokes DL tool
and helps mitigate data provenance/governance issues.

In this context, DBMS and cloud vendors are increasingly asking:
“How to enable seamless support for DL over DB-resident data?”. The
past waves of in-RDBMS ML offer at least four lessons.
(1) The main user base of in-RDBMS ML tools are not Python-
oriented data scientists but SQL-oriented business analysts. Such
users increasingly want access to DL training and inference from
within the SQL console. As per estimates by the MADlib team [2],
about 20-25% of Greenplum customers today use its in-RDBMS ML
analytics capabilities alongside SQL analytics.
(2) Although governance and provenance were always important for
enterprises in sensitive domains such as financial and health care,
they now have renewed urgency for all companies including the
tech giants, due to new laws such as GDPR [33] and CCPA [82].
Companies will likely start frowning upon DL users manually ex-
porting, copying, and moving business-critical data around in an
ad hoc manner. Although one could program to automate such
processes, and use services like MLFlow and Kubeflow [60, 76] for
governance and provenance tools, it is still an extra burden for the
enterprise users to learn, especially when they are already familiar
with established DBMS support for governance/provenance.
(3) It is far too tedious for DBMS developers to reimplement DL
algorithms. So, one must preserve the usability of DL tools such as
TensorFlow for specifying complex DL workloads. This also allows
analysts to just reuse DL training specification programs written
by data scientists or others.
(4) Parallel RDBMSs already offer a mature execution engine on
sharded large-scale data. But state-of-the-art distributed DL execu-
tion tools such as Horovod [94] are still notoriously painful to set
up, operate, and debug [19]. This presents parallel RDBMSs/data
systems an opportunity to bridge the gap on scalable execution.

Overall, we see two contrasting paradigms for howDL is brought
to DB-resident data. The DL user can export the data to a file sys-
tem, invoke a DL tool manually, and manage all derived data/meta-
data/artifacts on their own. Alternatively, in the “in-data-system
DL” approach, ETL and the DL workload are orchestrated by a data
system, as Figure 1 illustrates. Crucially, this approach leaves room
for implementation flexibility on how exactly the DL tool consumes
data; this flexibility opens up possibilities that we will explore later.

1.2 Toward In-Data System DL
Apache MADlib has recently pioneered in-DBMS DL support [11].
DL workload is specified using Keras APIs, enabling business an-
alysts to reuse DL configurations written by, say, data scientists.

MADlib ships mini-batch data from the DB to a TensorFlow func-
tion invoked in a DBMS User Defined Function (UDF)/User Defined
Aggregate Function (UDAF). For distributed execution, MADlib
used the “model averaging” (MA)1 heuristic for SGD [42, 117]. Alas,
MA has poor convergence behavior for highly non-convex DL [80].
Thus, this approach is sub-optimal for bringing DL to DBs.

We observe that MA misses a major opportunity for parallelism
in DL: model selection. ML theory teaches us that tuning hyperpa-
rameters is crucial, and this requires training many models [62, 95].
Often, DL users also compare alternate neural architectures, alter
the base features, etc. Thus, model selection in practice often leads
to dozens, if not hundreds, of models to train in one go [40, 80].

Exploiting the above observation, recent work proposed a new
approach to distributed DL model selection called Model Hopper
Parallelism (MOP) [63, 79, 80]. MOP is a hybrid of sharded data
parallelism and task parallelism. MOP works as follows: train dif-
ferent models on different workers in parallel for one sub-epoch on
their local shards, checkpoint and “hop” the models across workers,
and restart training the same epoch on the next worker’s shard.
MOP is a form of bulk asynchronous parallelism since it imposes no
barrier synchronization across workers, unlike Bulk Synchronous
Parallel (BSP) data systems. Overall, MOPwas shown to be the most
resource-efficient approach to distributed DL model selection [80].

1.3 Focus of this Paper
Given the benefits of MOP we ask: “How to bring MOP-based DL to
DB-resident data?” We find that there is no single “best” approach,
and there is an interesting tradeoff space of alternative approaches.
This paper explains these approaches, contrasts them analytically,
and compares them empirically with large-scale DL workloads. We
use Greenplum as the archetype but emphasize that the approaches
compared are generic and applicable to any parallel RDBMS. Thus,
our results could be of wide interest to all DBMS and cloud vendors.

We seek approaches that do not change the code of the data sys-
tem. This eases practical adoption but restricts how MOP can be
applied. For instance, Spark now supports flexible scheduling of
workers [35]; this made it easy to integrate MOP with Spark in the
Cerebro system [1]. But parallel RDBMSs such as Greenplum, AWS
Redshift, etc., use BSP across workers, conflicting with MOP’s asyn-
chrony. We have multiple axes of comparative evaluation, including
runtime efficiency, ease of governance, implementation difficulty, and
portability. Section 3 explains all approaches and Section 4 compares
them in detail, but as a preview, Figure 2 shows the approaches on
the first two axes.

We compare 4 new approaches: (1) Fully in-DBMS MOP us-
ing UDAF, which has been adopted by MADlib [12] (2) Partially
in-DBMS MOP using Concurrent Targeted Queries (CTQ) (to be
introduced in Section 3.2); (3) In-DB but not in-DBMS (data is in DB
but all operations are not) MOP with Direct Access (DA); and (4)
Regular out-of-DBMS approach using Cerebro-Spark. MA is largely
dominated by the UDAF approach but all the other approaches fall
on the Pareto frontier. For instance, the out-of-DBMSCerebro-Spark
approach and in-DB DA approaches are much more efficient than
UDAF but may be harder to govern in a production environment.
The CTQ approach offers a middle ground on these two axes.

1In addition to MA, MADlib has adopted one of the approaches we will evaluate [12].
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Figure 2: Tradeoffs of ease of data governance vs. efficiency
for various approaches. ∗Depending on an implementation
detail CTQmayhave the same ease of governance asMAand
UDAF; see Section 4.2 for details.

Our comparative analyses of these approaches expose more inter-
esting gaps. For instance, with theoretical and simulation analyses,
we show that the efficiency gap between CTQ and UDAF grows
wider when the models and hardware are more heterogeneous,
even up to 6x in a realistic scenario. Finally, an extensive empirical
comparison using the ML benchmark datasets ImageNet and Criteo
shows that the real runtime gaps between UDAF and DA be as
high as 3x. Overall, our experiments and analyses show that it is
beneficial to bring MOP-based DL to DB-resident data, but it is
non-trivial to meet all practical desiderata. We hope our results
spur more conversations in the DB and cloud industries on how
best to support DL on DB-resident data.

In summary, this paper makes the following contributions:
• To the best of our knowledge, this is the first paper to analyze
the tradeoffs and design alternatives of supporting large-
scale DL model selection on DB-resident data.

• We show a spectrum of possible approaches on the Pareto
frontier of efficiency, ease of governance, and other practical
desiderata. In particular, we show a new approach that is
in-DB but not in-DBMS, posing new accessibility questions
for DB vendors.

• We perform a formal analysis of the limits of the efficiency
gaps between the new approaches.

• We perform an extensive empirical comparison of the ap-
proaches using large ML benchmark datasets to evaluate
their runtimes, scalability, and internal design tradeoffs.

2 BACKGROUND AND PRELIMINARIES
We start with a brief background on the most common DL training
algorithm: mini-batch SGD, and the burden of DL model selection.
Then we explain the challenges and constraints faced by in-DBMS
approaches. Finally, we review and compare various paradigms on
parallelizing DL model building on DBMSs and explain why MOP
is perhaps the most desirable choice, given the DBMS constraints.

2.1 Background on ML Concepts
Mini-batch SGD. DL training is a non-convex optimization prob-
lem [45]. It is solvable by mini-batch SGD or its variants (e.g.,
Adam [58] or RMSprop [24]). SGD is iterative in nature and per-
forms multiple passes over the data. Each pass is called an epoch.
Within one epoch, it randomly samples a batch of examples (called a
mini-batch) without replacement and uses that to estimate gradients

and updates the model. It repeats this process until the epoch ends.
Such sampling is achieved in practice by performing a random shuf-
fle of the dataset beforehand or after each epoch. In SQL, this can
be easily achieved using ORDER BY RANDOM() [42]. SGD is inher-
ently sequential; deviating from sequential execution may worsen
convergence behavior [80, 113], typically raising the number of
epochs needed for a given accuracy.

Model selection. DL requires subtle tuning. Developing a DL
model from scratch is challenging, for the model’s performance
depends non-linearly on the neural architectures and hyperparam-
eter settings. Neural architecture defines a DL model, and different
architectures could offer drastically different accuracies on the
same task. Hyperparameters are the knobs that control how the
model is trained and regularized. It is critical to tune these settings
as they could greatly affect the model accuracy [62, 95]. Hence,
the user needs to find the best combination of choices for neural
architectures and hyperparameters; this process is called model
selection [62]. We call the collection of model architecture and hy-
perparameters model configuration, or simply model config. Due to
model selection burdens, DL routinely requires training of dozens
to hundreds of models [40]. There is a line of research trying to
guide model selection with meta-heuristics like grid/random search,
PBT [50], ASHA [67], Hyperopt [25]. These works are orthogonal
to our work, because they study the algorithmic issue of what con-
figurations to explore, while our paper studies the systems-level
issue of how to execute a given model selection workload efficiently
and compares the alternatives on multiple fronts.

2.2 Constraints and Challenges in Bringing DL
to DBMSs

We first consider in-DBMS DL that relies only on UDAFs/UDFs
without modifying the internal code of the DBMS. We also use
the data handling functionalities of the DBMS. It is challenging to
implement because of constraints that many parallel DBMSs share.
We summarize these constraints as follows:
Bulk synchronous parallelism (BSP). Each query executes in an
all-or-nothing manner on a dataset that is sharded across workers.
A synchronization barrier is injected at the end of every query.
There is no trivial way at the SQL/UDF level to poll partial results.
No message-passing among workers. Some of the existing DL
systems rely on protocols such as MPI or RPC for communication,
but to enable these functionalities at the UDF level would require
modifications to the DBMS and/or substantial efforts. Hence the
preferable communication method among workers is the pipes pro-
vided by the DBMS. This constraint would make some distributed
DL paradigms especially hard to implement.
One query at a time. For each database connection session, only
one query is permitted at any time. Using multiple clients and DB
sessions for the same query is a way to achieve parallelism by
manually dissecting the query into subqueries and unifying the
results on the client-side, it may be considered as an anti-pattern
as now the query planning takes place out-of-DBMS.
Data access through DBMS. In a DBMS, data is usually com-
pressed and stored on disk as pagefiles (physical files on disk that
contain database pages.). To access data, one must go through the
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Table 1: Summary of various parallel paradigms’ fitness for
in-data-system DL.

Centralized
communication

Coarse
grained

Data-
parallel

Fast
convergence

Task Parallel ✓ ✓ ✗ ✓

Model Avg. ✓ ✓ ✓ ✗

Param. Server ✓ ✗ ✓ ✓

Horovod ✗ ✗ ✓ ✓

MOP ✓ ✓ ✓ ✓

DBMS query stack. If the data is frequently and iteratively accessed
as we see in DL training, such repeated accessing and decompres-
sion could bring serious overheads.

2.3 Paradigms for Distributed DL
There has been a lot of work on distributed DL training. How-
ever, most of the techniques do not have or assume a trivial data
layer. Adjustments must be made to integrate them into an exist-
ing data system. The DBMS has constraints that render many of
the approaches unsuitable or difficult to implement. We translate
the constraints of Section 2.2 into the following requirements for
distributed DL paradigms for amenability to the in-DBMS setting.:

• Centralized communication.Asmentioned in Section 2.2,
we want the communication pattern to be as simple as pos-
sible. P2P communication is typically not allowed.

• Coarse-grained parallelization. The training would bet-
ter be parallelized at epoch instead of mini-batch level. Since
we will embed the training jobs as data system tasks/queries,
fine-grained parallelization will lead to massive number of
queries that can cause heavy overheads.

• Data-parallelism. The data is already partitioned in the
data system. Fully replicating the entire data across workers
is not desirable and may not even be feasible at large scales.

• Fast convergence. In order to save computational and re-
source costs of model selection, we want the models to con-
verge fast in terms of number of epochs, ideally resembling
the learning curves obtained by the gold-standard sequential
SGD.

Next we explain the major distributed DL model selection ap-
proaches in the literature and explain how well they fit (or not) the
above constraints. Table 1 summarizes our comparative analysis.
Task Parallel. In this paradigm, different model configs of the
model selection workload run on different workers in a task-parallel
manner. Example tools include PythonDask, Celery, Vizier [44], and
Ray [77]. Workers locally run sequential SGD on the whole dataset.
Thus, this approach provides the best convergence efficiency. There
is no communication across workers during training. Still, it requires
full data replication on each worker, which is inefficient, and may
not even be feasible for large sharded datasets in DBMSs.
Model Averaging (MA). In BSP systems such as TensorFlow with
model averaging [5], data is sharded. The model configs are trained
in parallel one-by-one. Every model is broadcasted and trained
on each worker’s data shard independently. Then a merge step
takes place on the master; it averages the weights (or gradients).
This approach is a potential candidate and has been adopted by

In-DBMS
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Figure 3: Design alternatives for MOP in DBMS.

MADlib [11]. Alas, it converges poorly for DL models, which are
highly non-convex [98]. Nevertheless, since it satisfies most of the
constraints, we include it as a key baseline in our experiments.
Fine-grained Parallel. These paradigms are similar to BSP, but
they work at a finer granularity at the mini-batch level. The
communication pattern can be centralized or decentralized. The
most prominent example of centralized paradigms is Parameter
Server (PS) [68]. The best example for decentralized paradigms is
Horovod [94]; it adopts HPC-style techniques to enable synchro-
nous all-reduce SGD. These methods all have good convergence
behavior but very high communication costs. They too are not good
candidates because of the granularity. Horovod further requires P2P
communication patterns that are not allowed in most data systems.
Model Hopper Parallelism (MOP). MOP used in system Cere-
bro [80] is recent progress towards resource-efficient DL. This is
a hybrid of task- and data-parallelism. Each worker is assigned
one model config from the model selection workload and trains
the model with its local data shard; this process is called one sub-
epoch. When one sub-epoch finishes, the model is passed to other
data shards for further training. After several sub-epochs, every
model finally has seen the entire dataset, and that is one epoch
of training. Overall, a model hops from one worker to another in-
between sub-epochs. The scheduling is done via an asynchronous
random scheduler that works well on heterogeneous workloads
and supports fault tolerance. MOP fits all our requirements because
communication-wise, it has a centralized pattern and low cost, for
it works at sub-epoch granularity. Data-wise, it works nicely with
sharded data. Finally, it offers equivalency to sequential SGD, which
has the highest convergence efficiency. Hence, we decided MOP
would be a better choice for in-DBMS DL.

3 OVERVIEW OF ALTERNATE APPROACHES
Given the benefits of MOP, the question becomes how to bring
MOP-based DL to DBMS-resident data. There are multiple possible
approaches due to the implementation flexibility. To better explain
these alternatives, we first divide the components of MOP execution
into five layers of design decisions: Interface, Scheduling, Execution,
Data Access, and Storage. Each layer can be implemented in flexible
ways. Figure 3 summarizes the architectural alternatives.
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Figure 5: Conceptual illustration of one sub-epoch of UDAF.

(1) Interface layer: the high-level APIs that take in the user’s DL
model selection workload; it could be implemented in SQL, familiar
to business analysts, or in Python, familiar to data scientists.
(2) Scheduling layer: the scheduler orchestrates and manages
placements of training units. We could implement the scheduler as
an in-DBMS procedure or use a standalone MOP scheduler.
(3) Execution layer: execution engine invokes DL tools and con-
ducts model training via mini-batch SGD. We could use the data
systems’ execution engine or resort to standalone Cerebro for this
layer. Model hopping can be cast as SQL queries or be implemented
as separate components with other communication methods.
(4) Data Access and Storage layer: we could leave the data in
DBMS or export them. There are also multiple ways to access the
data; if data is in a data lake, access is trivial. Otherwise, if the data
is in DBMS, we can rely on DBMS’s native data accessor or use a
technique we call Direct Access to bypass the whole query stack
and access the data from its physical storage directly.

Because of these flexibilities, there are various approaches for
the end-to-end implementation of MOP. We find four interesting
canonical approaches: (1) Fully in-DBMS MOP using User-Defined
Aggregate Functions (UDAF); (2) Partially in-DBMS MOP using
Concurrent Targeted Queries (CTQ); (3) In-DB but not in-DBMS
MOP using Direct Access (DA); and (4) Regular out-of-data-system
approach using Cerebro-Spark. We use Greenplum as the archetype
but emphasize that the approaches compared are generic and ap-
plicable to any parallel DBMS. We do not claim these are the only
possible approaches; rather, we find these are prototypical exam-
ples of feasible approaches based on the combinations of design
decisions in Figure 3. We now introduce each approach and dive
into the analysis and comparisons later in Section 4. We summarize
the design choices for each approach in Table 2.

3.1 User-Defined Aggregate Functions (UDAF)
This approach implements MOP as DBMS extensions with UDFs
and UDAFs. On the 5 design decisions of this approach and other

Table 2: Summary of each approach’s design for the 5 layers.
IN: in-DBMS. OUT: out-of-DBMS.

Approach Interface Scheduling Execution Data Access Storage

UDAF SQL IN IN IN IN
CTQ Python OUT IN IN IN
DA Python OUT OUT OUT IN/OUT

Cerebro-Spark Python OUT OUT OUT OUT

CTQ

Standalone MOP 
scheduler Child UDAF

Models

User
Python interface

Data shardsAsync. 
SQL 
APIs

Data System

CTQ

Figure 6: CTQ approach. Partially in-DBMS.

approaches to be introduced, please refer to Table 2. UDAF ap-
proach is called fully in-DBMS because all functions are in-DBMS
procedures, and both data and models are stored in DBMS.

Figure 4 illustrates the approach. It maintains a data table and a
model table storing the DLmodel selection workload, with each row
containing a model. Both tables are sharded based on distribution
keys. These keys are used by the DBMS to determine where the
rows are stored. The rows are distributed across worker nodes by
the master node matching the values of a designated distribution
key column. So all the rows with the same distribution key end
up in the same worker node. By manipulating these keys, we can
control the affinity of data/model. The user first defines the model
architectures and workloads through a SQL interface. DBMS then
invokes the MOP scheduler implemented in UDF.

This approach’s scheduler is synchronous due to the BSP nature
of in-DBMS execution, in contrast to the asynchronous random
scheduler that standalone MOP adopts. It uses a simple round-robin
heuristic for placingmodels on data shards. The scheduler translates
the workload into UDAF queries dispatched and executed on the
joined table of data and model. These UDAFs subsequently invoke
DL tool (we use TensorFlow/Keras) for training. It schedules a batch
of sub-epochs on the workers at a time and waits for completion.
After several batches, one epoch is completed; it then repeats the
process to train for multiple epochs.

Conceptually, each UDAF is a query of SELECT udaf(...) FROM
data JOIN model GROUP BY key. Figure 5 illustrates the execution
of one sub-epoch batch. Data is pre-packed into buffers and stored in
a sharded table. Models are stored similarly in another sharded table.
On each physical node of the DBMS, there are multiple rows of data
buffers and only one row of model. During the execution, the model
row is fed to DL tools to initialize the model, which will be stored
as the aggregation state. The worker then scans the data shard and
feeds each data buffer to the DL tool, which unpacks the buffers and
generates mini-batches for training and updating the stored model.
After scanning is done, the scheduler redistributes updated models
to different physical nodes by manipulating their distribution keys.
The data table, on the other hand, never redistributes.

3.2 Concurrent Targeted Queries (CTQ)
This approach is built upon CTQs, a DBMS feature we will ex-
plain shortly. In contrast to UDAF, it has a Python interface, uses a
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Table 3: Conceptual comparison of various architectural approaches of integrating MOP with DBMS. ∗CTQ can have highest
or high ease of governance, depending onwhethermodels are governed by DBMS. †If node RAM is insufficient, swap is needed
for DA and the blowup could rise up to 2x.

Efficiency Governance Storage Blowup Implementation Difficulty Portability Design Anti-patterns

UDAF Medium Highest None Medium Medium No
CTQ High High-Highest∗ None Medium Medium Yes
DA Highest High None - 2x† Hard Low Yes

Cerebro-Spark Highest Low 2x Easy High N/A

DA

Standalone MOP 
scheduler 

Models

User
Python interface

Async. 
Data

shards

Data 
System

Physical
Storage

Page files

SQL APIs
Query sys. 
catalogs

Direct Accessor

Figure 7: DA approach. In-DB but not in-DBMS.

standalone MOP scheduler and out-of-DBMS model hopping com-
ponents. We chose to store and hop models out of the DBMS for
implementation simplicity; it is technically possible to keep models
governed by DBMS, which can raise this approach’s ease of gover-
nance (see Section 4.2). Since some core computations run outside
the DBMS, we call this approach partially in-DBMS.

We now explain what a CTQ is. In a parallel DBMS, tables are
sharded according to distribution keys. When a query only affects
one shard, e.g., with a predicate that filters on the distribution
key, the query processor will dispatch a query plan to that specific
shard only. Such feature is sometimes called targeted query and
commonly available [7, 21, 75]. Meanwhile, most DBMSs also allow
concurrent queries. Therefore, we can assume more fine-grained
control over the execution by issuing targeted queries concurrently.
We name this trick Concurrent Targeted Queries (CTQ).

Figure 6 shows the CTQ approach. The user interacts with a
Python interface to define models and workloads. It then invokes
a standalone MOP scheduler, as described in [80]. This scheduler
works differently from the one used in the UDAF approach; it or-
chestrates DL training by spawning children processes that contain
DBMS connections and using them to issue CTQs. Meanwhile, mod-
els are hopped outside the DBMS; we use a shared filesystem for this
task. Conceptually, each CTQ is a query of SELECT udf(model)
FROM data WHERE key=x. Each DBMS node loads the assigned
model from the shared filesystem and uses its local data shard to
train the model, then checkpoints the updated model back to the
filesystem. This concludes one sub-epoch; after every model has
visited every data shard once, it is called one epoch.

3.3 Direct Access (DA)
This approach further deviates fromUDAF and CTQ by employing a
method we call Direct Access, bypassing the entire query processor
of DBMS and accessing the on-disk pagefiles directly. This way,
there is enough freedom to plug in and run standalone Cerebro [80]
system but without exporting the data. This approach is called
in-DB but not in-DBMS because although the DBMS still governs
data, all executions are out of DBMS.

Cerebro-Spark

Spark driver

MOP 
scheduler

Spark worker

MOP worker

Exported data

User

Spark worker

MOP worker
Python 

interface

Figure 8: Cerebro-Spark approach. Fully out of DBMS.

Figure 7 illustrates DA. The user talks to a Python interface to
define workloads and query necessary system catalogs. DA then
uses the standalone Cerebro for scheduling and execution. Work-
ers perform training on the data table’s sharded pagefiles directly
through DAs. DAs first retrieve the pagefiles’ location, mapping,
layout, and compression information from system catalogs. Then
they emulate DBMS’s access methods to fetch the pages’ contents
and feed the data to Cerebro. The latter then consumes the data
and runs MOP to train the workload. Notably, this approach is very
generalizable and not limited to MOP execution; one can essen-
tially plug in any data-parallel training frameworks like Pytorch or
Horovod. To demonstrate the generality, in addition to MOP, we
will also implement a fine-grained data-parallel approach with DA
using Pytorch DDP. We will show the evaluations in Section 5.1.

3.4 Cerebro-Spark
Cerebro-Spark is a regular out-of-DBMS approach that exports data
to filesystem, runs ETL processes, and feeds data to the DL tools.
It uses the data system (Spark) workers and stores data as plain
files. The DBMS does not participate in the training and loses the
governance of data.

Figure 8 illustrates the architecture. The user defines workloads
through Python APIs. The standalone MOP scheduler initializes
MOP workers by embedding them as long-running Spark tasks.
It then communicates with these workers and orchestrates the
training just like in the standalone Cerebro system. In addition to
Cerebro-Spark, we will also evaluate other frameworks such as
Pytorch DDP and Hyperopt-Spark in Section 5.

4 COMPARATIVE ANALYSES OF
APPROACHES

With all the approaches introduced, we now compare and ana-
lyze them on 6 major axes: runtime efficiency, ease of governance,
storage blowup (defined as the actual storage usage divided by the
original data size), implementation difficulty, portability, and design
anti-patterns. Table 3 shows a conceptual comparison. These axes
represent the desiderata and we find that no single approach can
fulfill all of them. The more the approach is in-DBMS, the lower
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the runtime efficiency but the higher the ease of governance and
vice versa. We will discuss the reasons in Section 4.1 and 4.2. In
terms of storage, Cerebro-Spark has 2x blowup because of exporting.
The situation is more complicated on the implementation difficulty
and portability axes, and we will give a more rigorous analysis in
Section 4.3 and 4.4. As for the last axis, CTQ and DA both intro-
duce design anti-patterns since they are not fully in-DBMS: CTQ
introduces a user-level anti-pattern by issuing multiple queries
concurrently from outside of the SQL console, while MADlib and
many other tools makes a single query inside a SQL console. This
violates One query at a time mentioned in Section 2.2. DA has anti-
patterns that violate No message-passing among workers and data
access through DBMS from Section 2.2. In the rest of this section,
we pick 4 most interesting axes and analyze them in more detail.

4.1 Runtime Efficiency
This is one of the most important desiderata. Several factors affect
runtime: DL tool invocation, data access, model hopping, and sched-
ule makespans (end-to-end runtime of the generated schedule).
DL tool invocation. Both UDAF and CTQ invoke the DL tools
through wrappers, whereas DA and Cerebro-Spark do not. Such
wrappers may be a source of inefficiency.
Data access.Both UDAF and CTQ access data throughDBMS. They
could be bottlenecked by data transmission2, especially when the
data is compressed and tweaked by the DBMS, e.g., TOAST-ed [17].
DA can mitigate this issue; by accessing the physical pagefiles
directly and caching data, it provides similar efficiency to Cerebro-
Spark, which also reads from filesystem and caches data in memory.
Model hopping.Model hopping might be another source of ineffi-
ciency. CTQ, DA, and Cerebro-Spark all do model hopping outside
of the DBMS and have similarly low overheads on this end, as [80]
pointed out. On the other hand, the UDAF approach relies on the
DBMS to hop models through JOIN between the data and model ta-
bles. This JOIN may bring some overheads, especially if the models
are large. In later experiments (Section 5.2.3), we will indeed see
UDAF is much slower than CTQ on model hopping. However, even
for UDAF, model hopping still incurs negligible runtime compared
to other components.

Scheduling makespans. CTQ, DA, and Cerebro-Spark all employ
the same asynchronous random scheduler. This scheduler’s robust-
ness on heterogeneous workloads/workers has been tested in [80].
However, UDAF uses a synchronous round-robin scheduler, which
may not work very well with heterogeneity. We show visualizations
of potential scenarios in our technical report [81]. How large is the
gap between these two schedulers, and could it be a major perfor-
mance bottleneck? We now analyze the differences theoretically
between sync. and async. MOP and later verify it empirically in
Section 5.2.2. Table 4 presents all notations used in this section.

Let there be a set of model configs M and a set of workersW.
|M| = 𝑀 , and |W| = 𝑊 . Assume the workers to be identical and
each worker contains the same amount of data. Let 𝑙𝑥 denote the per
sub-epoch runtime of model config𝑚𝑥 and L = {𝑙𝑥 }. For analysis
simplicity, let L be a two-mode right-tailed distribution, i.e., most
models are fast and have per sub-epoch runtime of 𝑙𝑠 , while only
2Active development by the MADlib team is going on to mitigate this issue.

Table 4: Notation for discussion on scheduling makespans.

Notation Description

M, 𝑀 Set of models and the cardinality of it
W,𝑊 Set of workers and the cardinality of it
L Set of each model’s per sub-epoch runtime
L𝑖 For UDAF only. Batch of models scheduled for the i-th sub-epoch
𝑚𝑥 The x-th model
𝑙𝑥 The per sub-epoch runtime of the x-th model
𝑙𝑠 A scale representing the runtimes of fast models
𝑙𝑚 A scale representing the runtimes of slow models
𝑝 Probability of a model being a fast model
𝑇𝑢 ,𝑇𝑐 End-to-end runtimes for sync. and async. MOP, respectively
𝜂 Theoretical upper bound of the speedup 𝑇𝑢/𝑇𝑐

some are slow and take 𝑙𝑚 , 𝑙𝑚 ≫ 𝑙𝑠 . Let 𝑝 be the probability of 𝑙𝑥
being fast: 𝑝 = 𝑃𝑟 (𝑙𝑥 ∼ 𝑙𝑠 ). We now analytically compute the per-
epoch makespan 𝑇𝑢 and 𝑇𝑐 for sync. and async. MOP, respectively.
We have the following two propositions, the proofs to them can be
found in our technical report [81].
Proposition 1. Speedup of async. over sync. MOP is:

𝑇𝑢

𝑇𝑐
= 𝑝𝑊

𝑙𝑠

𝑙
+ (1 − 𝑝𝑊 ) 𝑙𝑚

𝑙
. (1)

Proposition 2. Theoretical upper bound of the speedup is:

𝜂 =
𝑙𝑚

𝑝𝑙𝑠 + (1 − 𝑝)𝑙𝑚
. (2)

Section 5.2.2 shows an experiment that verifies the analysis.

4.2 Ease of Governance
As we mentioned earlier, data governance/provenance now has
renewed urgency for all enterprises and even the Web compa-
nies, because of the new regulations and laws like GDPR [33] and
CCPA [82]. Among the four approaches, UDAF provides the best
support for governance/provenance, as it keeps both the dataset
and the models in DBMS, which already has built-in governance
support. CTQ and DA both use DBMS to govern data. For CTQ, we
chose to store models out of DBMS for simplicity, but it is techni-
cally possible to keep models in DBMS; this way, it can provide
similar ease of governance as UDAF. DA, which relies on external
Cerebro, does not manage models with DBMS and thus, loses some
ease of governance. Cerebro-Spark does not come with existing
governance support and may impose other security issues due to
the ad hoc data export and copying. To regain governance, one has
to maintain exporting scripts and seek help from external services
like MLflow or Kubeflow [60, 76], and such external services are
not under the DBMS vendor’s control.

4.3 Implementation Difficulty
The out-of-DBMS approach (Cerebro-Spark) is generally the easy
one to implement. One naive implementation would be a SELECT *
FROM ... query followed by some pipelines that feed the exported
data to DL tools. The UDAF approach requires more effort to im-
plement the MOP scheduler, wrappers for invoking DL tools, and
pipelines that feed data to DL tools and return results to the DBMS.
CTQ requires similar efforts as UDAF does, except its scheduler
is asynchronous and slightly harder to implement due to concur-
rency in queries. DA requires the most effort because it needs to
implement/port the whole DBMS table scan method, including
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Table 5: Workloads.★architectures similar to VGG16 and ResNet50, respectively.
Dataset Model arch. Batch size Learning rate Regularization Epochs

ImageNet {VGG16★, ResNet50★} {32, 256} {10−4, 10−6} {10−4, 10−6} 10
Criteo 3-layer NN, 1000+500 hidden units {32, 64, 256, 512} {10−3, 10−4} {10−4, 10−5} 5

locating, unpacking, and reading the pagefiles. If the table is com-
pressed and TOAST-ed [17], then one must also implement/port
the decompression and de-TOAST methods. Such work is ad-hoc,
DBMS-specific, and may not even be viable for proprietary DB and
pagefile formats. Simultaneously, because its execution is outside
the DBMS, unified memory management is difficult, and it could
interfere with other queries. As a result, more careful tuning and
setting of configurations are required to implement DA.

4.4 Portability
Portability indicates how much code can be reused if one wants to
change the underlying DBMS. The out-of-DBMS approach again
excels in this area because it is almost agnostic to the DBMS and
can usually be ported easily. UDAF approach is also portable as
it requires only UDFs and UDAFs, which are supported in most
DBMSs. Medium efforts are needed to export these functions to
other DBMSs. CTQ is largely similar to UDAF, except it, in addition,
requires the DBMS to support concurrent targeted queries. DA is
the less portable option, as it is deeply coupled with the DBMS.
Unless the target DBMS employs a similar physical storage layer,
to port one existing DA implementation would be difficult.

5 EMPIRICAL COMPARISONS AND
ANALYSES

We will first thoroughly compare the end-to-end performance of
all the described approaches and study the tradeoff space. Then we
will study the effects of factors such as heterogeneous and AutoML
(Hyperopt) workloads and model sizes. We will also evaluate the
scalability of each approach. All of our source code, data, and other
artifacts are available at [6]. We will test on both GPU-enabled
and CPU-only environments. One might wonder how GPUs will
be available in practice for users that operate traditional DBMS
clusters. As per Greenplum team estimates [2], at least 80% of its
customers continue using on-premise clusters, largely due to pri-
vacy and security concerns, especially in the government, financial
and health care sectors. Such users are increasingly purchasing
GPUs and connecting them to their Greenplum clusters for in-
house deployment of DL workloads. In cloud-native DBMSs such
as AWS Redshift, one can easily spin up GPU instances and connect
them with the DBMS instances. Use of hybrid cloud and public
cloud is also increasing. It is not uncommon to run POCs and tests
in public cloud with rented GPUs, before purchasing GPUs for
in-house production deployment.
Compared approaches.We compare Cerebro-Spark, UDAF, CTQ,
DA (renamed to DA-Cerebro), and MADlib MA, which is included
as a key baseline. Only for the end-to-end test, we also include
PytochDDP, a fine-grained out-of-DBMS data parallel DL train-
ing framework; it relies on NCCL and MPI for communications.
We have also combined DA with PytorchDDP (named as DA-
PytorchDDP) so that it can work with DB data directly. For the
Hyperopt tests in Section 5.2.4, we also include a system called

Hyperopt-Spark, which is an out-of-DBMS task parallel model se-
lection system.
Datasets. We use two large benchmark datasets: ImageNet [36]
and Criteo [34]. We use the processing scripts and versions released
as part of Cerebro [1, 80]. ImageNet contains 1.2M images with
1000 classes; it has an on-disk size of 250GB. Criteo has 100M data
points, binary classes, and an on-disk size of 400GB.
Workloads. We use various DL model selection workloads with
different degrees of heterogeneity for different tests. Please refer to
each corresponding section for details. We use Adam [58] as the
mini-batch SGD method for all tests.
Experimental Setup.We use one cluster on CloudLab [91] with
8 worker nodes and 1 master node. Each node has two Intel Xeon
10-core 2.20 GHz CPUs, 192GB memory, 1TB HDD, and 10 Gbps
network. Each worker node also has an Nvidia P100 GPU. For tests
withMLP on the Criteo dataset, we disable the GPUs to demonstrate
the system’s performance under CPU-only setting. All nodes run
Ubuntu 16.04. We use GPDB 5.27, Spark 2.4.5, Cerebro 1.0.0, Tensor-
Flow 1.14.0, Pytorch 1.4.0, CUDA 10.0, and cuDNN 7.4. Both datasets
are randomly shuffled and split into 8 equal-sized partitions.

5.1 End-to-end Performance Study
Wefirst present the end-to-end results for both ImageNet and Criteo.
For ImageNet, we use two different neural architectures and a hy-
perparameters grid, yielding 16 training configs. For Criteo, we con-
duct a hyperparameter-tuning-only workload with also 16 training
configs. Table 5 offers the details. Such grid search-based model
selection is standard in DL practice and still widely used by prac-
titioners [29]. We compare our various architectural approaches
with each other. MA is the baseline for this comparison.

For each different approach, separate ETL processes must be
done beforehand. For UDAF, CTQ, and MA, ETL is in-DBMS pre-
processing that packs the original data into byte arrays and buffers
for the UDAFs to consume. For DA, ETL includes the above pro-
cessing, plus accessing tables and TOAST pagefiles, de-TOAST, and
loading into the main memory. For Cerebro-Spark, ETL consists
of data exporting from DBMS and preprocessing to cast the data
formats; we use a distributed Greenplum ETL tool gpfdist [100]
for exporting and a customized program for preprocessing.

We examine the performance on multiple fronts: convergence,
runtime, and resource utilization/cost including GPU/CPU, DRAM,
network, and disk. Figure 9(A) demonstrates the convergence be-
haviors for ImageNet. All but MA converge to the same optima, as
they are equivalent to sequential SGD. MA, on the other hand, has
a convergence problem and learns much slower than the rest. We
skip the convergence curves on Criteo for brevity’s sake because all
methods, including MA, have almost indistinguishable convergence
behavior (reaching 99% accuracy quickly).
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Table 6: Runtimes and resource utilizations of end-to-end tests. Execution time and all utilizations are measured excluding
ETL. Per-epoch time equals Execution time divided by number of epochs. Total network means the total amount of data
transmitted during execution. We report disk read/write as per worker average. ∗These methods showed little to no disk reads
because data has been cached in memory during the ETL process.

Approach ETL time Exec. time Epoch time GPU util. GPU RAM util. CPU util. DRAM util. Tol. network Per w. disk R/W

ImageNet

MA 2.8 hr 42.6 hr 4.3 hr 56.8% 32.5% 2.3 % 3.1% 0.9 TB 12 GB/ 2 GB
UDAF 2.8 hr 48.5 hr 4.9 hr 49.9% 28.6% 2.2% 5.6% 0.8 TB 12 GB / 279 GB
CTQ 2.8 hr 45.1 hr 4.5 hr 56.2% 32.2% 2.5% 1.9% 0.6 TB 12 GB / 152 GB

DA-Cerebro 5.4 hr 23.0 hr 2.3 hr 70.5% 42.5% 2.8% 20.2% 0.6 TB 0.6 GB∗ / 0.3 GB
Cerebro-Spark 4.4 hr 23.9 hr 2.4 hr 65.1% 36.5% 11.2% 17.4% 1.1 TB 0.2 GB∗ / 2 GB

PyTDDP 4.4 hr 77.3 hr 7.7 hr 97.1% 13.1% 8.1% 14.7% 1900 TB None∗ / 11 GB
DA-PyTDDP 5.4 hr 77.5 hr 7.8 hr 96.8% 13.2% 8.2 % 21.1% 1900 TB None∗ / 1 GB

Criteo

MA 8.6 hr 38.5 hr 7.7 hr N/A N/A 44.1% 2.3% 0.1 TB 1 GB / 2 GB
UDAF 8.6 hr 62.0 hr 12.4 hr N/A N/A 27.1% 2.3% 0.1 TB 1 GB / 38 GB
CTQ 8.6 hr 40.0 hr 8.0 hr N/A N/A 41.0% 1.9% 0.08 TB 1 GB / 22 GB

DA-Cerebro 10.5 hr 21.5 hr 4.3 hr N/A N/A 37.4% 28.5% 0.07 TB 0.2 GB∗ / 0.3 GB
Cerebro-Spark 8.3 hr 22.5 hr 4.5 hr N/A N/A 35.2% 28.5% 0.2 TB 0.2 GB∗ / 1 GB

Figure 9: End-to-end tests results. (A): Convergence behavior on ImageNet. (B): Per-epoch breakdown of runtimes for each
approach on ImageNet. (C): Per-epoch breakdown of runtimes for each approach on Criteo.

Table 6 summarizes the runtime performance and resource uti-
lizations/costs.3 MA, UDAF, and CTQ show close speed. They have
identical reads, equal to the local on-disk pagefile size (12 GB for
ImageNet and 1 GB for Criteo). After the first table scan the pagefile
remains in the OS cache. MA is marginally the fastest among them,
but note that it has poor convergence, as Figure 9(A) shows. CTQ is
slightly faster than UDAF due to the removal of sub-epoch level syn-
chronization barriers. The benefit is not obvious here, but we will
drill deeper in Section 5.2.2. DA-Cerebro and Cerebro-Spark show
the best performance and are close in runtime. This shows that one
can achieve the same high performance as a SOTA out-of-DBMS DL
approach while still operating on DB-resident data. The two data
parallel methods PytorchDDP and DA-PytorchDDP are heavily bot-
tlenecked by networking (over 1700x higher cost compared to other
approaches). They both showed high GPU utilization only because
they employ GPU for communication. They have less GPU mem-
ory consumption because how Pytorch differs from TensorFlow
on memory management. They performed even slower on Criteo
and were estimated to take over 16 days of runtime each, so we
skipped these tests. DA-Cerebro, Cerebro-Spark, PytorchDDP, and
DA-PytorchDDP showed higher DRAM usage because of caching.
They also showed few disk reads due to preloading and caching
during ETL; the writes are due to metadata management. Note disk
R/W for all approaches are not significant, and none of them is
bound by the disk IO speed.
3Runtimes may not be directly comparable to figures in [80], as in this paper, we
adopted newer model implementations and different on-disk file formats.

Profiling and breakdowns. To further investigate the root cause
of performance differences, we take both datasets and profile every
approach by running several more breakdown tests and calculat-
ing each execution component’s runtime. Excluding the ETL time,
Figure 9(B) presents results for ImageNet, and Figure 9(C) presents
results from Criteo tests. We record per-epoch machine time com-
positions for each worker and take the average among them. Hence,
the summations of the runtime numbers are close to but may not
be identical to the end-to-end runtimes in Table 6, which are deter-
mined by the slowest worker runtime instead of the mean runtime.
We break down per-epoch runtimes into four different components:
(1) Train+Valid: time spent in the DL tools, including initialization
and destruction of models, allocation and freeing of GPU memory,
training and validation with GPU, etc. MA, UDAF, and CTQ are less
efficient because these in-DBMS approaches invoke the DL tools
through wrappers that cause extra overheads. For PytorchDDP and
DA-PytorchDDP, since they overlap communication with compu-
tation, Train+Valid also includes time spent on model updating
communications (we name these Model Transmission, introduced
below). For this reason they showed very high Train+Valid time
because they are bounded by networking.
(2) Data Transmission: time spent on transmitting data to the DL
tool from storage. For in-DBMS approaches, it also includes the data
decompression time. This component is non-negligible for the 3
in-DBMS approaches due to data access overheads, while in the rest
approaches, training data is cached in memory during ETL; this part
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Figure 10: (A): End-to-end scalability plot, y-axis shows the speedups with respective to single-node runtime. (B - D): Per-
epoch machine time for each component normalized against single-node. The machine time is averaged among all nodes.
∗Other Components: includes Model Transmission and Approach-specific as described in Section 5.1.

costs little. Recall from Table 3 that Cerebro-Spark and PytorchDDP
suffers a 2x storage blowup, while DA-based approaches do not.
(3) Model Transmission: time spent on transmitting serialized
models/gradients between workers. For MA, Model Transmission
means model collecting and broadcasting; it means model hopping
for the rest MOP-based approaches. UDAF and MA are not so
efficient on this end because they require database joins for re-
distributing models. We will further investigate this performance
gap in Section 5.2.3. The two PytorchDDP approaches showed none
on this front only because it is absorbed into Train+Valid.
(4) Approach-specific: for MA, it is the time spent on averaging
model weights. For the rest, it means sub-optimal scheduling and/or
idling of some workers. Cerebro-Spark, CTQ, and DA-Cerebro use
an asynchronous random scheduler and work better for heteroge-
neous workloads. As for UDAF, the performance is affected by its
synchronous round-robin scheduler. We further discuss on these
two schedulers in Section 5.2.2.

Comparing the Criteo tests to ImageNet tests, we notice two
significant differences: (1). Model Transmission time drops for MA
and UDAF. The MLP model used in Criteo tests is smaller than the
CNNs used for ImageNet. (2). The UDAF approach suffers more
from idling in Criteo because the workload is more heterogeneous
due to highly disparate batch sizes.

Overall, the MA approach shows unfavorable convergence
behavior and the fine-grained data parallel approaches (DA-
PytorchDDP and PytorchDDP) are heavily bottlenecked. MOP-
based approaches largely dominate these two parallelizationmodels.
As for MOP, the in-DBMS approaches suffer from various overheads
and are, in general, less efficient than the DA-Cerebro approach
and the Cerebro-Spark approach. However, recall that runtime ef-
ficiency is not the only criterion for such a system, as we showed
earlier in Table 3. There exists a tradeoff space and perhaps no
universal optima to the question.

5.2 Drill-down Experiments
5.2.1 Scalability (strong scaling).
In this test, we evaluate the strong scalability. We used clusters
with 1, 2, 4, 8 workers with ImageNet. We use a workload of 8
homogenous configs (4 learning rates, 2 regularization values, and
ResNet50 architecture) trained for one epoch. All runtimes exclude
ETL. Figure 10(A) presents the results.

All approaches show close-to-linear scaling. To better under-
stand these behaviors, we further drill down each runtime compo-
nent and evaluate their scalability separately. For this purpose, we

collect the average machine time spent on each component from
all workers varying cluster size; we then report them against the
single node time. Figures 10(B-D) summarize the results. Flat lines
indicate that the component’s machine time is constant regardless
of cluster size, therefore perfectly scalable. An increasing curve
means sub-linearity, and vice versa.

Figure 10(B) and Figure 10(C) show that the Training+Validation
and Data Transmission component scale almost linearly for all ap-
proaches. The Model Transmission part is minuscule in the end-to-
end time, thus we report it collectively with the Approach-specific
components in Figure 10(D). For DA-Cerebro, CTQ, and Cerebro-
Spark, workersmay idle relativelymorewhen the number ofmodels
approaches the number of workers. The random scheduler they use
can yield sub-optimal scheduling under such circumstances. [80]
Hence they all show sub-linear scalability, especially when cluster
size grows from 4 to 8. On the other hand, UDAF adopts a round-
robin scheduler to emulate MOP, which happens to be optimal for
this specific homogenous workload; thus, it shows better scalabil-
ity. MA utilizes all workers and shows no idle time, but the model
averaging cost still rises a little when the cluster size grows.

Figure 11: Heterogenous experiment. (A) Real experi-
ments supplemented with simulation and theoretical re-
sults. 𝑙𝑚/𝑙𝑠 = 8 (B) Extreme scenario simulated. 𝑙𝑚/𝑙𝑠 = 20.

5.2.2 Async. MOP vs sync. MOP on Heterogeneous Workloads.
To verify Equation 1 and Equation 2 proposed in Section 4.1 and
prove the benefit of async. MOP over sync. MOP for heterogeneous
workloads, we conduct the following experiments. We have one
sync. MOP approach: UDAF; and among the 3 async. MOP ap-
proaches we pick CTQ, as the main difference between UDAF and
CTQ is only the synchronization model of scheduler. Following the
analysis in Section 4.1, letM be drawn from a Bernoulli distribution:
𝑃𝑟 (𝑙𝑥 = 𝑙𝑠 ) = 𝑝, 𝑃𝑟 (𝑙𝑥 = 𝑙𝑚) = 1 − 𝑝 .

We then test with real experiments. The fast model is Mo-
bileNetV2 with batch size 128, while the slow model is NASNet-
Mobile with batch size 4. We down-sampled 6% of ImageNet, so
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that the experiments can finish in reasonable amount of time (same
experiments on the full datasets are estimated to cost over two
months). Sampling might alter the ratios between constant over-
heads and components that scale with dataset size. However, since
the constant overheads are minuscule, the sampling proves not to
affect our conclusion. In Figure 11(A) we see the actual runs fit
nicely with our simulation and theory. Furthermore, Figure 11(B)
shows one simulated extreme scenario with a large workload and 32
workers to demonstrate the theoretical upper bound of the speedup.
We refer interested readers to our technical report [81] for more
simulations. Overall, these experiments verify that our theoretical
bounds match with the actual runtime gaps. Meanwhile, we also
show that the upper bound of speedup is determined by 𝜂. This
indicates that CTQ can be a more efficient choice than UDAF when
working with highly heterogeneous workloads and/or hardware.

5.2.3 Effect of model size on UDAF and CTQ.
The size of models is typically orders of magnitude smaller than
the size of training dataset. Thus, although model hopping time is
proportional to model size, it is usually negligible in large-scale DL.
However, this assumption may not hold for the UDAF approach
because of the JOIN as explained in Section 4.1 Model hopping.
We run a test to investigate model transmission cost with varying
model sizes empirically. Our test shows that the CTQ approach
imposes little to no bottleneck and is far less sensitive to the model
size. However, the UDAF approach suffers more overheads on larger
models. This confirms that the JOIN and storing models inside the
DB can indeed cause some overheads, although this overhead is
not too major (less than 10% in this case). The details of this test
can be found in our technical report [81].

5.2.4 Experiments with Hyperopt Workloads.

In the end-to-end experiments we used a simple grid search
workload. Now we evaluate the generality of workloads for the
approaches. We use a model selection workload guided by Hyper-
opt (TPE algorithm) [25]. The parameter grid we use to sample
model configs is as follows. Model: [ResNet18, ResNet34]; Learning
rate: [10−5, . . . , 10−1]; Weight decay: [10−4, 10−6]; Batch size: [16,
. . . , 256]. We also include a comparison to Hyperopt-Spark [49], a
standalone task parallel model selection system. We set the number
of model configs to 32 and degree of parallelism to 8. Figure 12 plots
the learning curves. CTQ has ∼50% higher runtime than UDAF;
This is because MOP’s random scheduler has a decreased runtime
performance when the degree of parallelism is close to the number
of workers [80] and showed in our technical report [81]. This issue
can be largely mitigated by increasing the degree of parallelism.
DA/Cerebro-Spark run similarly to Hyperopt-Spark, but the latter
requires both data export and full data replication to each worker.
Therefore it has a storage blowup of 9x, while Cerebro-Spark has
2x and DA has none in this case.

On GPU utilizations, the conclusion is consistent with those
showed in Section 5.1. We have 32% (UDAF), 33% (CTQ), 44%
(Cerebro-Spark), 44% (DA), and 45% (Hyperopt-Spark). The rest
of the measurements are available in our technical report [81].

5.2.5 Implementation Difficulty.
Implementation difficulty is harder to measure quantitively. Fol-
lowing the discussion in Section 4.3, we now try to provide a more

quantitive measurement in the form of lines of source code (LOC).
The APPROACH (LOC) is as follows: UDAF (5866), CTQ (5939),
DA-Cerebro (4230: 2764 for standalone Cerebro and 1466 for DA),
and Cerebro-Spark (4338). Note these are counted for end-to-end
implementation. UDAF and CTQ can largely share codebase: given
UDAF, it requires only a few hundred lines to implement CTQ as
well. Overall, DA and Cerebro-Spark take less code to implement
than their counterparts UDAF and CTQ. However, this does not
necessarily mean they are subjectively easier; as discussed in Sec-
tion 4.3, the DA approach was much more time-consuming than
the LOC number would otherwise suggest.

6 KEY TAKEAWAYS
For Cloud Vendors and Practitioners. We find that MOP is a
good option for in-DBMS distributed DL model selection, compared
to fine-grained data parallelism and task parallelism. It is possible
to integrate MOP with existing DBMSs without modifying their
internal code. Depending on governance/provenance requirements,
we compared different approaches, ranging from fully in-DBMS
with only UDAFs, to fully out-of-DBMS with data exports and
external DL systems. Overall, the in-DBMS approaches of UDAF
and CTQ may provide better ease of governance, while DA and
Cerebro-Spark offer better efficiency. Furthermore, CTQ provides
asynchronous scheduling over UDAF, which leads to better effi-
ciency for heterogeneous workloads but sacrifices some governance.
DA and Cerebro-Spark offer the same efficiency level. DA, being
more difficult to implement and less portable, can avoid data exports
that Cerebro-Spark requires. Finally, these MOP-based approaches
are still subject to the inherent limits of Cerebro [80]; for instance,
it only supports ML models trainable with SGD, and tree methods
are currently not supported. We refer the reader to the above paper
for details. All our code has been made available at [6]. The MADlib
team is still actively studying and optimizing these approaches.

For Researchers. We realized that the current data warehouse ar-
chitecture lacks optimizations for distributed DL. One of the major
problems is the data format: data warehouses store data in pro-
prietary pagefile formats. Figure 9 showed that accessing data via
the DBMS can bring severe bottlenecks for DL workloads, which
require frequent and rapid table scans. It is largely an open research
question, but some proposals appear on the horizon, such as Lake-
house [112]. In this paper, we devised Direct Access with caching,
and we hope it can serve as a candidate solution to the above prob-
lems. However, DA is coupled with the proprietary DBMS data
formats. Standard pagefile formats such as Parquet would simplify
the implementation and increase the portability drastically. Simi-
larly, in-memory formats like Apache Arrow would vastly simplify
the data transmission process between different runtimes and may
also bring performance boosts.

7 RELATEDWORK
ML in Data Systems. There is a long line of work on ML in
data systems. The general approach is to implement ML algo-
rithms via UDFs or other APIs exposed by the data system. Apache
MADlib [42, 47] is one of the most mature such tools. The UDAF ap-
proach we studied for integrating MOP is already a part of MADlib.
Vertica-ML [41], Oracle Machine Learning [15], Microsoft SQL
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Figure 12: Hyperopt learning curves. Each diagram contains learning curves of all 32 model configs. Best val. errors achieved
by each approach are within the margin: 0.31 (Cerebro-Spark), 0.33 (UDAF), 0.31 (CTQ), 0.33 (DA), 0.31 (Hyperopt-Spark).

Server ML Services [13], and Google BigQuery [8] are other promi-
nent examples of in-RDBMS ML tools. [87] brings ML to column
stores. MLlib [74] and MLlib∗ [116] use Spark’s APIs to implement
various ML algorithms. Mahout [22] is a distributed ML system on
top of dataflow systems. Increasingly, more data system builders
want to integrate with DL via wrappers that invoke popular DL
tools: Horovod on Spark [10], TensorFrames [16], and PS2 [115] are
examples. More generally, the DBMS and cloud industry believe
DBMSs will continue to play a key role in enterprise ML [18].

Some works also expand DBMS support for ML. Raven [55]
deeply integrates ML runtimes into a DBMS. UDA-GIST [66] ex-
pands support for algorithms that are both data-parallel and state-
parallel. [73] adds linear algebra support to RDBMS. [111] proposes
a “tensor-relational” algebra towards declarativeML. TensorDB [57]
is a system for in-DBMS tensor decomposition. [56] focuses on
in-DBMS sparse tensors for ML. DB4ML [52] expedites iterative
ML algorithms via asynchrony. [43] discusses declarative model
weights distribution/aggregation for data-parallel ML. [51] adds bet-
ter support for recursion to RDBMS for distributedML. MLearn [93]
is a declarative language for in-DBMS ML. AIDA [38] provides an
abstraction for in-DBMS data analytics; it uses DBMS for relational
operations and embeds Python for linear algebra.

All of the above works are complementary to ours. To the best
of our knowledge, our paper is the first to study system design
alternatives and tradeoffs for enabling DL workloads on DBMSs.
Specifically, we focus on bringing a recently published hybrid par-
allel execution approach for DL model selection, MOP, to the tradi-
tionally bulk-synchronous parallel world of DBMSs.
CustomML Systems. There is also a long line of work on custom
systems for ML training/model selection. FlexPS [48] and Lapse [90]
are both optimizations to Parameter Server [68]. Horovod [94]
brings in decentralized communication to boost runtime efficiency.
Vizier [44] and Rafiki [105] are systems for task-parallel model
selection; Ray [70, 77] was initially designed for reinforcement
learning but recently also supports task-parallel model selection.
Singa [83, 104] and SystemML [26–28] are end-to-end platforms
for ML that supports various distributed training. Visus [92] and
Ease.ml [88, 89] are examples of AutoML systems that manage the
whole ML lifecycle, including both data management and model
selection. Crossbow [59] and Ako [107] are systems for better re-
source scheduling and utilization for ML. [37] handles collaborative
working environments for ML development. Litz [86] focuses on
the elasticity of distributed ML.

All these works are also complementary to ours because they
study standalone ML/DL execution, not integration with data sys-
tems. While some of them may be faster than in-DBMS ML tools,
as we explained in depth in this paper, ML practitioners, especially
in enterprises, grapple with a more complex Pareto frontier beyond
just runtimes. Our paper lays out these tradeoffs in bringing DL
workloads closer to DB-resident data. That said, the CTQ approach
we studied was in part inspired by the pervasive use of task par-
allelism in such custom ML systems, including in Cerebro as we
explained earlier. More generally, we believe these historically dis-
tinct work lines–custom ML systems and ML on data systems–can
learn a lot from each other.
Data Access and Pipeline Optimizations for ML. There is
much prior work on optimizing ML+data processing pipelines.
Lara [64], Alpine-Meadow [96], and KeystoneML [97] all allow the
user to define pipelines with their APIs and perform pipeline-level
optimizations. Helix [109] injects intelligent caching and reuse be-
tween training iterations to reduce redundant work. [39] proposes
linear algebra that could work upon compressed data, thus saving
decompression time. [65] introduces a tuple-oriented compression
scheme for matrix and mini-batch SGD computations directly on
compressed data.

The above works are largely orthogonal to our paper, since
our goal is not to devise novel optimization schemes or systems
but rather to analytically and empirically study the tradeoffs of
alternative approaches to bring DL workloads to DB-resident data.
That said, the DA approach we studied was in part inspired by such
prior work on ML operating more directly on the raw stored data.
It is interesting future work to integrate more such optimizations
into systems that bring DL closer to DB-resident data.
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